957 research outputs found

    Geometry induced potential on a 2D-section of a wormhole: catenoid

    Full text link
    We show that a two dimensional wormhole geometry is equivalent to a catenoid, a minimal surface. We then obtain the curvature induced geometric potential and show that the ground state with zero energy corresponds to a reflectionless potential. By introducing an appropriate coordinate system we also obtain bound states for different angular momentum channels. Our findings can be realized in suitably bent bilayer graphene sheets with a neck or in a honeycomb lattice with an array of dislocations or in nanoscale waveguides in the shape of a catenoid.Comment: to appear in Phys.Rev.

    Complete Embedded Self-Translating Surfaces under Mean Curvature Flow

    Full text link
    We describe a construction of complete embedded self-translating surfaces under mean curvature flow by desingularizing the intersection of a finite family of grim reapers in general position.Comment: 42 pages, 8 figures. v2: typos correcte

    Stability of bicontinuous cubic phases in ternary amphiphilic systems with spontaneous curvature

    Get PDF
    We study the phase behavior of ternary amphiphilic systems in the framework of a curvature model with non-vanishing spontaneous curvature. The amphiphilic monolayers can arrange in different ways to form micellar, hexagonal, lamellar and various bicontinuous cubic phases. For the latter case we consider both single structures (one monolayer) and double structures (two monolayers). Their interfaces are modeled by the triply periodic surfaces of constant mean curvature of the families G, D, P, C(P), I-WP and F-RD. The stability of the different bicontinuous cubic phases can be explained by the way in which their universal geometrical properties conspire with the concentration constraints. For vanishing saddle-splay modulus κˉ\bar \kappa, almost every phase considered has some region of stability in the Gibbs triangle. Although bicontinuous cubic phases are suppressed by sufficiently negative values of the saddle-splay modulus κˉ\bar \kappa, we find that they can exist for considerably lower values than obtained previously. The most stable bicontinuous cubic phases with decreasing κˉ<0\bar \kappa < 0 are the single and double gyroid structures since they combine favorable topological properties with extreme volume fractions.Comment: Revtex, 23 pages with 10 Postscript files included, to appear in J. Chem. Phys. 112 (6) (February 2000
    corecore